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Abstract: In regard of increasing rates of post-stroke mood disorders and evidences of a neuroprotective effect of antbiot-

ics after cerebral ischemia we have reviewed the clinical relevance of the neuroprotective and mood stabilizing effects of 

antibiotics in the light of the basic pathophsiology of depression. 
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INTRODUCTION 

 The overwhelming progress in basic neuroscience re-
search has led to many therapeutic advances for neurological 
and psychiatric diseases including a potentially improved 
perspective for a neuroprotective therapy. Antibiotics are 
interesting candidates as besides their well known antiinfec-
tious activity they possess an array of neuroprotective func-
tions such as prevention of neuroinflammation, mitochon-
drial mediated cytochrome c release, microglial activation 
and glutamate neurotoxicity [1-4]. Their attenuating effect 
on glutamate excitotoxicity has recently been associated with 
the stimulating effect on astroglial protein expression that is 
responsible for removing glutamate from the extracellular 
space [4]. Antibiotics may have a therapeutic potential for 
several types of neurological and psychiatric disorders such 
as cerebral ischemia, depression and schizophrenia.  

 In addition to excessive release of excitatory neurotrans-
mitters and deficient neurotrophic support, preclinical and 
clinical studies have demonstrated that major depression is 
also associated with an impaired inflammatory response [6-
12]. This includes activation of the inflammatory response 
system resulting in an increased production of proinflamma-
tory cytokines during the course of major depression [13]. 
Moreover, recent evidence suggests that the role of gluta-
mate, and its receptors in antidepressant activity is rapidly 
replicating [14-16]. This was suggested by preclinical and 
clinical studies showing that antidepressant drugs directly or 
indirectly reduce N-methyl-D-aspartate glutamate receptor 
function and drugs that reduce glutamatergic activity or glu-
tamate receptor-related signal transduction may also exert 
mood stabilizing effects [17-22,56].  

 These findings could be also important for post-stroke 
depression, one of the most frequent complications of a  
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stroke [5,23]. It has recently been hypothesized that post-
stroke depression is associated with the release of proin-
flammatory cytokines and indoleamine 2,3-dioxygenase 
which may lead to a depletion of serotonin in paralimbic 
regions. These findings suggest, for example, a therapeutic 
role of selective serotonin re-uptake inhibitors [24]. 
Although the postischemic neuroprotective effect of 
antibiotics has been already shown in various studies [25-
33], the antidepressant effect of antibiotics is relatively 
unknown.  

THE ANTIDEPRESSANT ROLE OF ANTIBIOTICS 

Minocycline 

 Minocycline is a second-generation tetracycline and one 
of the most promising neuroprotective agents currently in 
clinical trials in several neurodegenerative diseases [1,35-
40]. In addition to its anti-inflammatory effects in central 
nervous system disorders, it has also been shown to have 
multiple beneficial effects in brain injury. This includes the 
inhibition of microglial activation, glutamate toxicity and 
caspase-1-activated apoptosis and decreasing activity of p38 
mitogen activated protein kinase (p38 MAPK). Minocycline 
also attenautes the release of inducible nitric oxide syn-
thetase [1,34]. These actions of minocycline altogether are 
thought to be responsible for its success in various brain in-
jury models including focal and global cerebral ischemia 
[25-33]. Interestingly, recent studies of minocycline reveal 
that it has also neurogenesis inducing activity and antide-
pressant-like neuroprotective actions [41,42].  

 Recent studies reported that pro-inflammatory mediators 
are consistently increased in patients with major depression 
and are normalized after the antidepressant treatment [43-
45]. In this respect, it can be hypothesized that inflamation 
modulating effects of antibiotics decrease the deleterious 
effects of neuroinflamation on newborn neurons which may 
in turn provoke hippocampal neurogenesis in the context of a 
major depression. 
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 Molina-Hernandez et al., showed that minocycline re-
duced immobility and synergized the antidepressant actions 
of subthreshold doses of desipramine and glutamate receptor 
antagonists using the forced swimming test in mice [46]. 
These findings are supported by a very recent animal study 
showing that intracerebroventricularly infused minocycline 
reduced not only the neuronal damage, but also the anxiety-
like behavior which was found to correlate with measures of 
microglial activation [47]. Both studies suggested that a 
modulation of inflammation may be beneficial in protecting 
the brain and preventing the development of affective disor-
ders.  

 Additional animal studies suggested a role of mino-
cycline also in cognitive and pain disorders which is impor-
tant in the light of increasing evidence for cognitive and so-
matic symptoms during the course of a major depression. In 
this respect, Hunter et al., showed that minocycline protected 
basal forebrain cholinergic neurons from immunotoxic injury 
in mice and reversed the lesion associated cognitive impair-
ment [48]. Intrathecal given minocycline has been also found 
to attenuate peripheral inflammation-induced hyperalgesia 
by inhibiting p38 MAPK in experimental models of tissue 
injury and inflammation-evoked pain [49]. These findings 
altogether suggest its potential effectiveness in treating so-
matic symptoms commonly found in patients with major 
depression and somatoform disorders.  

 Interestingly, these preclinical findings are supported by 
pivotal clinical data. Levine et al., described that the addition 
of minocycline 150 mg/day to clomipramine not only led to 
significant improvement of depressive symptoms but was 
also associated with the resolution of facial pain [50].  

ßeta-Lactam Antibiotics 

 Beta-lactam group antibiotics are potent antibiotics inhib-
iting bacterial synthetic pathways [31]. It has been shown 
that ßeta-lactam antibiotics are the first practical pharmaceu-
ticals capable of increasing the expression and activity of 
glutamate transporters which are important in preventing 
glutamate neurotoxicity [3,4,31]. In this respect, Beta-lactam 
antibiotics were found to be neuroprotective when used in 
models of ischaemic injury and motor neuron degeneration 
[4,31,51,52]. Interestingly, recent findings showed that ex-
cessive glutamatergic transmission is associated with a de-
pressive-like behavior that can be balanced by enhanced glu-
tamate uptake [53-57]. This underlines not only the role of 
glutamate overload during depression but also the capability 
of beta-lactam antibiotics to stimulate glutamate uptake 
which may be responsible for their antidepressant-like activ-
ity. 

 The first study, conducted by Volchegorskii and Trenina 
showed that injection of reterpen, ceftazidime, and thienam 
in mice led to significant shortening of the duration of be-
havioral despair measured by the tail test, and intensified the 
exploratory and orientation activity in the open field test 
which was found to relate to changes in serotonin sensitivity 
[58]. Despite small differerences in frequency and amount of 
dosages between the administered drugs, this study provided 
strong preclinical evidence for the antidepressant effect of 
beta-lactam antibiotics. These findings were supported by 

another study investigating the antidepressant-like effect of 
ceftriaxone in mice. Mineur et al., showed that ceftriaxone 
increased immobility and freezing in the forced swim and 
tail suspension tests in mice, which is consistent with the 
hypothesis that enhanced uptake of glutamate might have 
antidepressant-like effects [59].  

Rapamycin 

 Rapamycin is a macrolid group antibiotic widely used in 
clinical routine as an immunosuppressant after organ trans-
plantation [60-62]. A well-documented action of rapamycin 
is its activity to inhibit mammalian target of rapamycin 
(mTOR), which is an important regulator of autophagy. 
Autophagy is a cell death process that plays a crucial role by 
controlling the levels of accumulation of aggregate proteins 
and toxic substances [63-65]. The important role of auto-
phagy in neurodegenerative disorders has been already 
shown and there is rapidly increasing evidence suggesting 
that the increased process of autophagy can lead to promi-
nent neuroprotective effect [66-73]. Additionally, enhanced 
autophagy has been also found to correlate with the mood 
stabilizing effect of lithium which is a well known neuropro-
tective agent [74]. These findings suggest not only the neu-
rodegenerative nature of mood disorders but also a possible 
association between the neuroprotective effect of mood sta-
bilizer agents and autophagy. Interestingly, rapamycin has 
been recently shown to interact with signaling pathways 
which are activated through depression and/or stress related 
decrease of neurotrophic support leading to the destabiliza-
tion of the mitochondrial membrane which may in turn result 
in neuronal cell death [75-78]. These findings were sup-
ported by an interesting study demonstrating that subchronic 
administration of rapamycin resulted in an antidepressant-
like activity in two different but widely accepted models of 
depression in mice and rats [79].  

 The study also suggested that mTOR inhibition may be a 
potential new target for the treatment of affective disorders. 

 However, it should be also noted that albeit acting via 
different mechanisms, the similar effects of lithium and ra-
pamycin on autophagy give us strong evidence for the im-
portant role of these pathways for the development and the 
treatment of effective disorders. 

CONCLUSION 

 In addition to their interesting antidepressant effects, all 
above mentioned antibiotics have been already shown to be 
neuroprotective in various in vivo and in vitro models of 
cerebral ischemia [25-32,72]. The neuroprotective effect is 
supported by a recent study showing that patients with acute 
stroke had significantly better outcome after minocycline 
treatment [80].  

 As summary, this review summarizes the current data 
that some antibiotics in common with mood stabilizators 
may have antidepressant and neuroprotective actions which 
should be evaluated with further studies.  
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